

SATRON[®]

PREON™ VG

Pressure Transmitter

INSTALLATION AND OPERATION INSTRUCTIONS MANUAL

TABLE OF CONTENTS

1 INSTALLATION.....	3
1.1 Mechanical Installation	3
1.1.1 Installing welded process couplings	4
1.1.2 Mounting the transmitter on the coupling	4
1.1.3 Instructions according and within the 3-A approval.....	5
1.1.4 Couplings.....	6
1.1.5 Installing the transmitter with PASVE®	7
1.2 Electrical connections.....	8
2. DEVICE CONFIGURATION.....	9
2.1 Using the HART® Communicator user interface	10
2.2 Setting up through HART® Communicator user interface.....	10
2.3 Device configuration with Satron pAdvisor Service Software	11
3. CONSTRUCTION AND OPERATION	13
3.1 Smart transmitter.....	13
4. USER'S GUIDE FOR MENUS	14
V-series (housing type N)	14

DOCUMENTS

Technical Specifications Datasheet: BPLV700
Installation and Instructions Manual: BPLV700AV

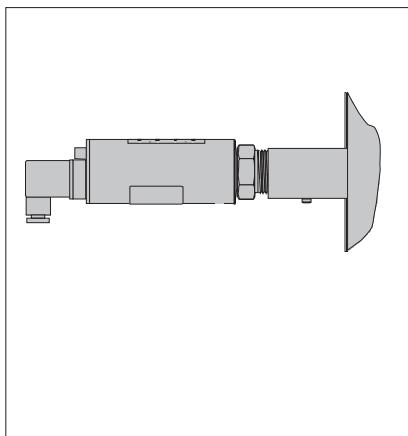
We reserve the right for technical modifications without prior notice.

HART® is a registered trademark of FieldComm Group, Inc.

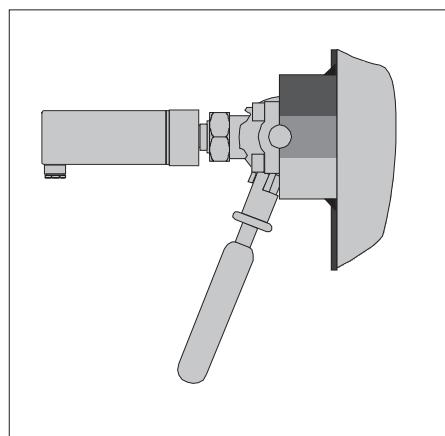
Pasve® is a trademark of Satron Instruments Inc.

Hastelloy® is the registered trademark of Haynes International.

1 INSTALLATION


1.1 MECHANICAL INSTALLATION

Mounting recommendations: Fig. 1-1


- Process connection direction: horizontal.
- Cable entry direction: from below.
- Connector coupling direction, calibration direction: horizontal.

Other considerations:

- Steam should not be admitted to the transmitter's sensing element.
- In outdoor installations you should make sure that water condensed from e.g. a steam line will not freeze and, by expanding, damage the transmitter's sensor diaphragm. For instance, this can be avoided by installing heat insulation up to the sensor diaphragm.
- When insulation is applied at the position, the temperature of the transmitter electronics housing should not exceed the specified maximum value.

installation with process coupling

installation with PASVE mounting/service valve

FIGURE 1-1 RECOMMENDED MOUNTING POSITIONS

1.1.1 INSTALLING WELDED PROCESS COUPLINGS

Mounting hole for coupling

- Make a Ø 45.5 mm (+0.5/-0.2 mm) hole in the tank wall or pipe, as shown in Figure 1-3.

Welding the coupling

These instructions apply to all welded couplings; welding the G1 standard coupling is described here as an example.

- Place the coupling in the mounting hole as shown in Fig. 1-4. Then weld with several runs so as to prevent the coupling's oval distortion and tightness problems.
- The transmitter must be out of the coupling while the coupling is welded. You can use the shut-off plug shown in Fig. 1-5 to shut the coupling. The plug protects the coupling's sealing face and permits the starting of the process without the transmitter.
- It is always recommendable to use the welding assistant (M1050420) while welding the coupling to prevent any distortions due to heat.
- Do not make weld grounding via any transmitter's body!

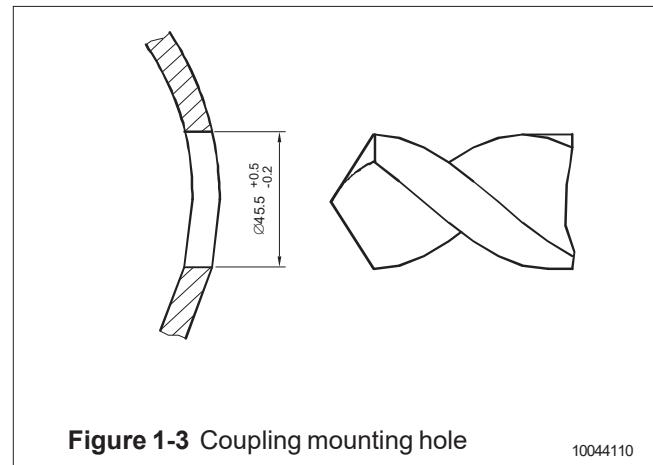


Figure 1-3 Coupling mounting hole

10044110

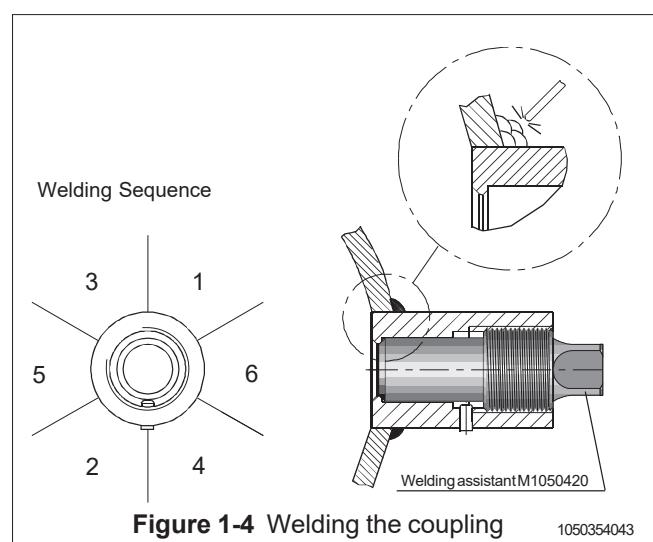


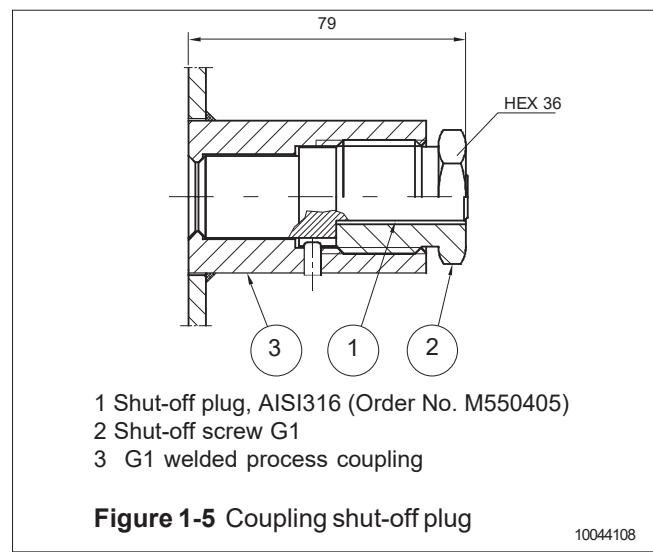
Figure 1-4 Welding the coupling

1050354043

1.1.2 MOUNTING THE TRANSMITTER ON THE COUPLING

Procedure

- Make sure that the coupling's sealing face is clean.
- Remove the orange protective plug from the transmitter's diaphragm.


DO NOT TOUCH THE DIAPHRAGM! FIGURE 1-6.

- Insert the transmitter in a straight line into the coupling (Fig. 1-7), so that the guide groove on the transmitter aligns with the stop pin on the coupling. The transmitter settles into position when the groove and pin are aligned, and will be prevented from rotating in the coupling.

WHEN INSERTING THE TRANSMITTER, BE CAREFUL NOT TO DAMAGE THE EDGE OF THE SENSOR DIAPHRAGM ON THE EDGES OF THE COUPLING OR ON THE END OF THE STOP PIN!

- Lock the transmitter in position by screwing the hex nut fully home. Finger tightness is sufficient to tighten the sealing faces. However, we recommend final tightening with a tool to eliminate the effect of vibration and other such factors. Apply 60±20 Nm torque.

DO NOT USE SEALING TAPE ETC. ON THREADED CONNECTION!

1 Shut-off plug, AISI316 (Order No. M550405)
2 Shut-off screw G1
3 G1 welded process coupling

Figure 1-5 Coupling shut-off plug

10044108

Figure 1-6

10044004

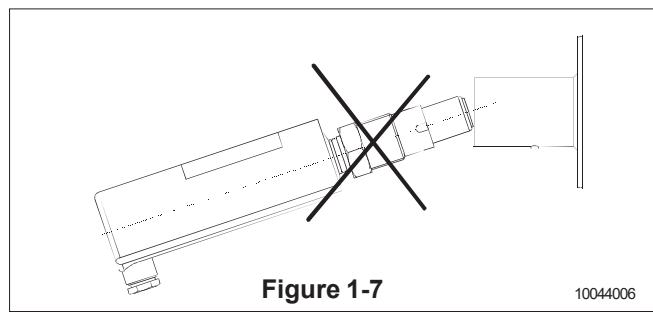
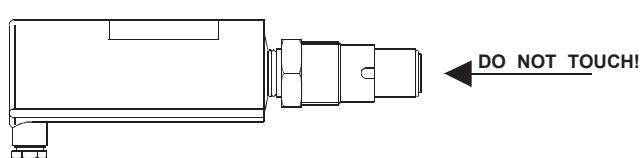
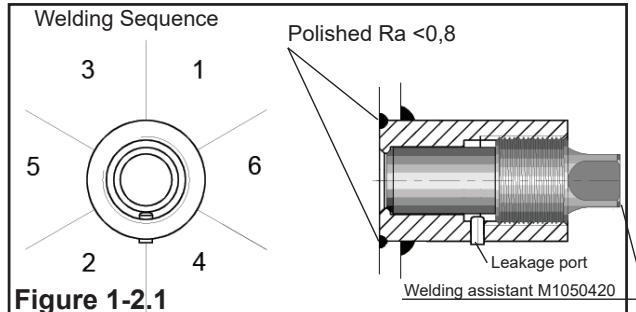



Figure 1-7

10044006

1.1.3 INSTRUCTIONS AND SPARE PARTS THAT ARE ACCORDING WITH THE 3A APPROVAL


All couplings compliant with the 3A standard are listed at the bottom of this page.

These instructions apply to hygienic welded couplings; welding of the G1 M548101A coupling is provided as an example.

- Insert the coupling into the mounting hole as shown in Fig. 1-2.1, ensuring the leakage detection port is facing downward.
- Weld using multiple passes to minimise oval distortion and maintain tightness.
- After welding, clean and polish the internal weld to achieve a surface finish of $Ra < 0.8 \mu\text{m}$.
- Remove the transmitter from the coupling before welding.
- Use the shut-off plug (as shown in the illustration) to seal the coupling. This plug protects the sealing face and allows the process to start without the transmitter installed.
- It is strongly recommended to use the welding assistant (M1050450) during welding to prevent heat-induced distortion.
- Do not use the transmitter body for weld grounding.

Couplings in combination with 3A:

38/G1" Welding adapter	M1050577
45/G1" Welding adapter	M548101
Tuchenhagen / Varivent DN25	M1050090
Tuchenhagen / Varivent DN50	M1050091
Tuchenhagen / Varivent DN65,5	M1050092
Tri-clover 25/38 ISO2852	M1050206
Tri-clover 40/51 ISO2852	M1050222
Tri-clover 63.5 ISO2852	M1050224

Figure 1-2.1

1.1.4 COUPLINGS

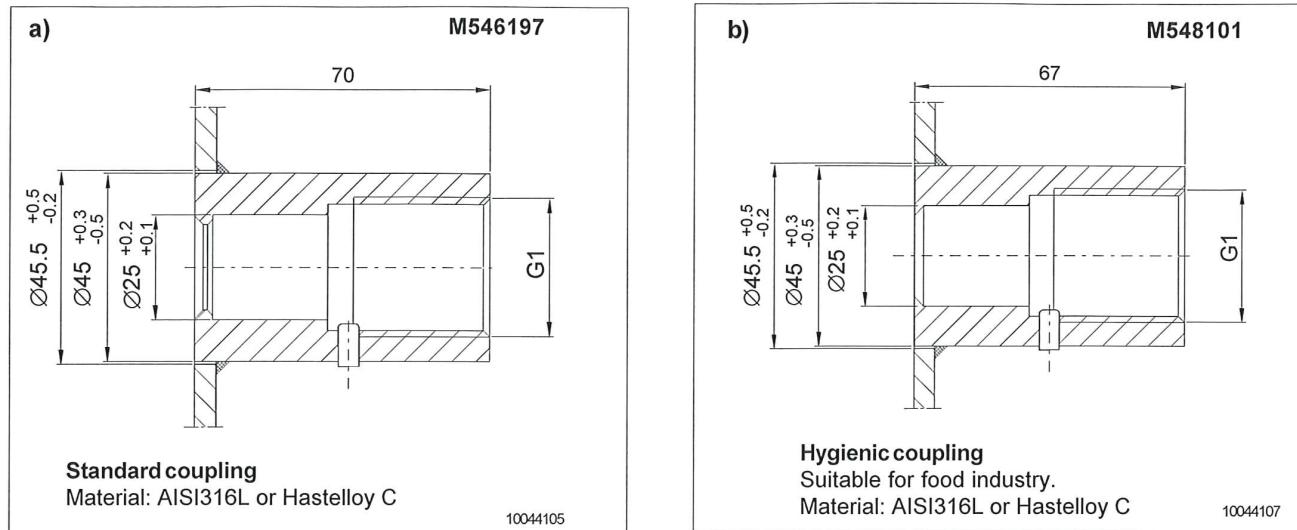


Figure 1-8 Welded couplings

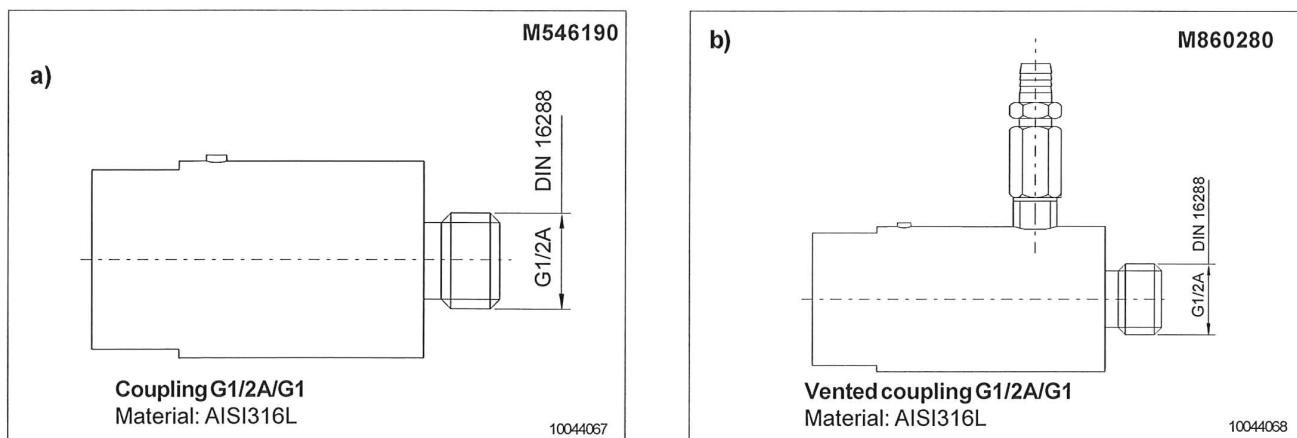
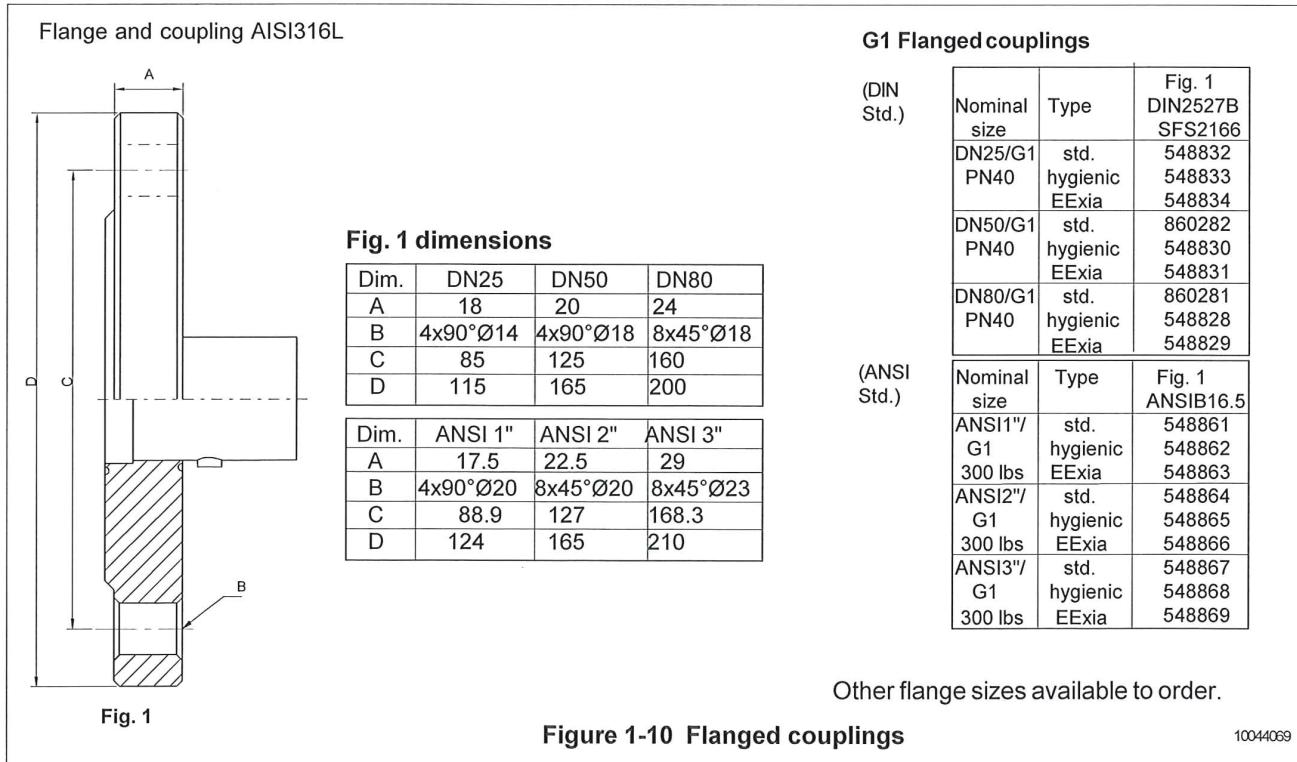
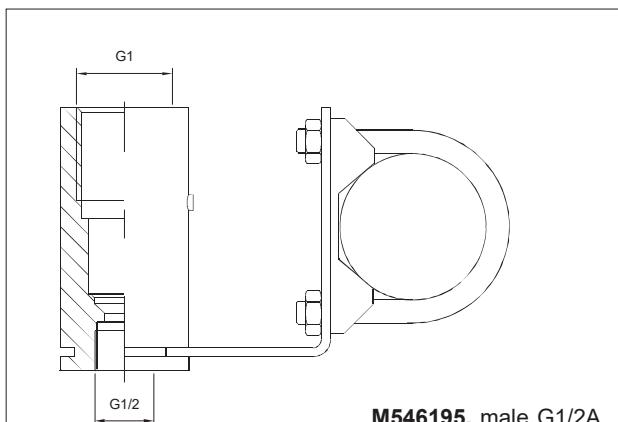
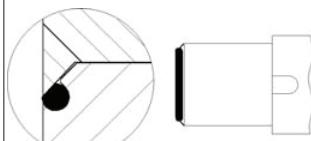
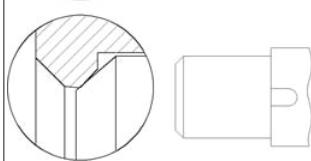



Figure 1-9 Special couplings

1.1.5 INSTALLING THE TRANSMITTER WITH PASVE® MOUNTING & SERVICE VALVE

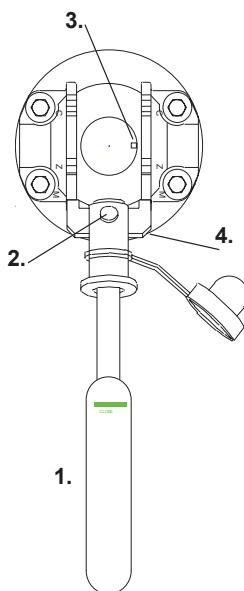
The three-position PASVE® mounting and service valve makes the installation of the transmitter easy. All necessary cleaning, zero adjustment and replacement operations will be easy and fast to perform with PASVE® without stopping the process.


Figure 1-11 G1/2 / G1 couplings

10044070

Three different options are available for the transmitter's process sealing:


AISI316L, Duplex diaphragm, FPM (Viton) or EPDM O-ring (code 5 or 6)
EHEDG - certified

AISI316L, CoNi-, Duplex, Hastelloy C276, Tantalum or Titanium diaphragm, metal/metal taper sealing (diaphragm also on sealing face) (code 4)

Figure 1-12 Process sealing

1050354040

Operation:

1. Lock (rotate) and select operating position (turn).
2. Release safety catch.
3. Transmitter dowel pin.
4. Reference and calibration pressure connection (M6).

Figure 1-13 Using PASVE®

All PASVE® types are also available with pneumatic actuator, flushing and limit switches.

Flange	Dimension D
ANSI 3" 150 lb	191
ANSI 3" 300 lb	210
DN80 PN40	200

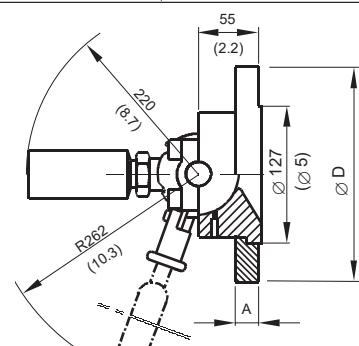
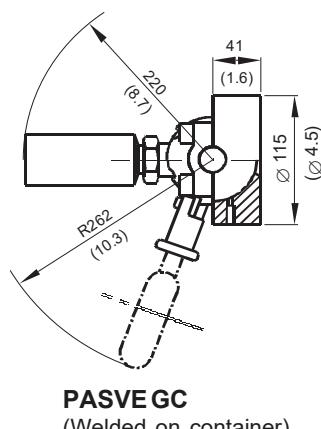
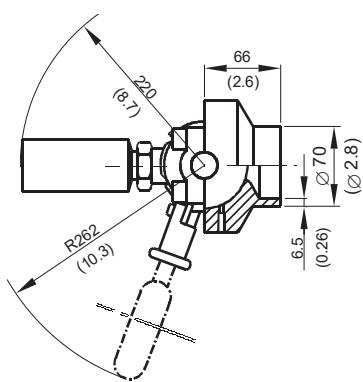
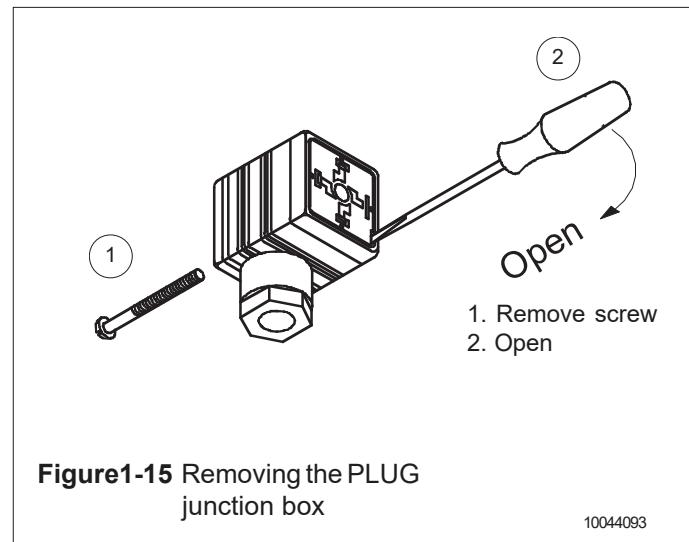





Figure 1-14 Mounting dimensions for different PASVE® types

10044132

1.2 ELECTRICAL CONNECTIONS

- Supply voltage and load of the transmitter according to the figure 1-16.
- We recommend shielded twisted-pair cable as signal cable.
- The signal cable should not be installed near high-voltage cables, large motors or frequency converters.
- The shield of the cable is grounded at the power supply end or according to the recommendations of the manufacturer of the used control system.

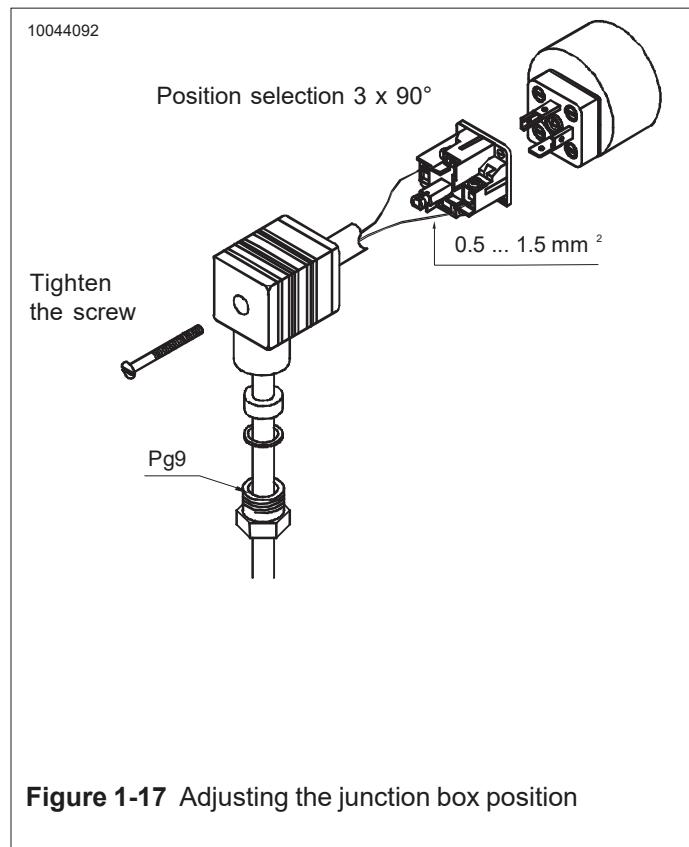


Figure 1-15 Removing the PLUG junction box

10044093

Figure 1-16 Supply voltage and load capacity (no ATEX)

Figure 1-17 Adjusting the junction box position

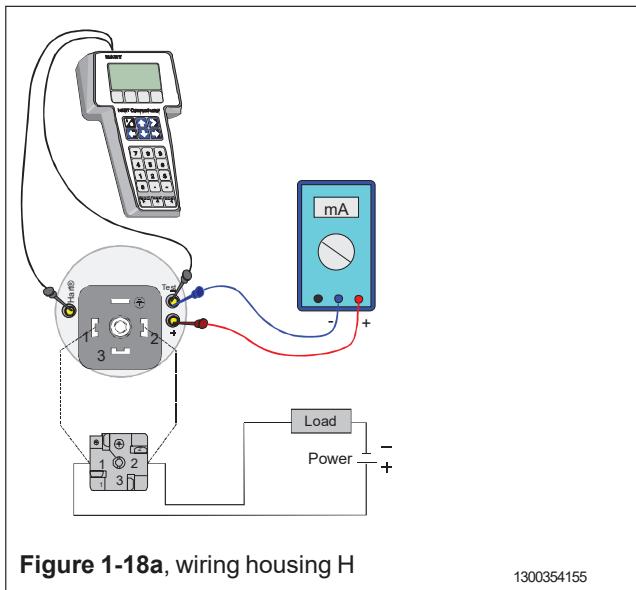


Figure 1-18a, wiring housing H

1300354155

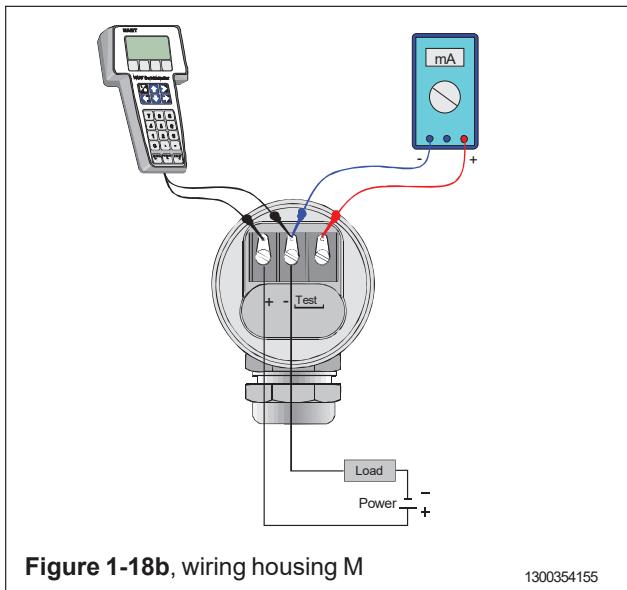


Figure 1-18b, wiring housing M

1300354155

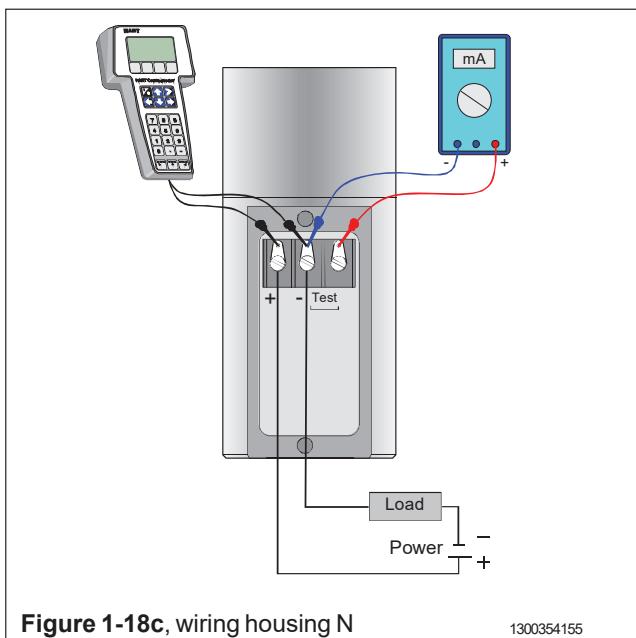


Figure 1-18c, wiring housing N

1300354155

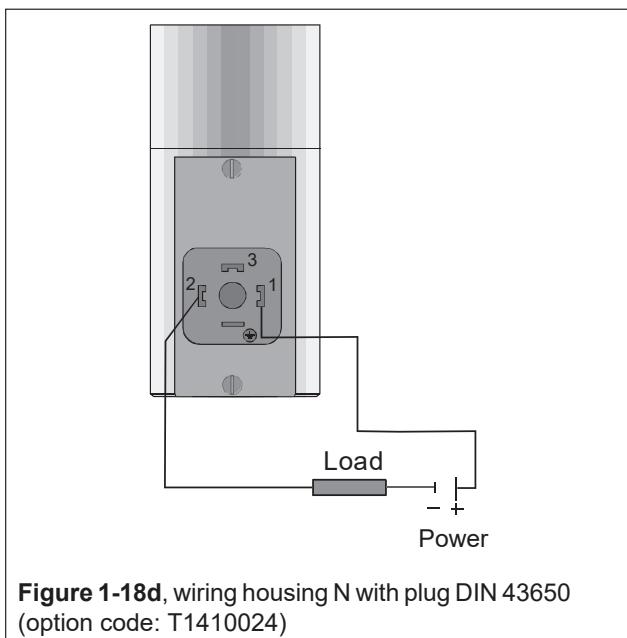


Figure 1-18d, wiring housing N with plug DIN 43650
(option code: T1410024)

2. DEVICE CONFIGURATION

2.1 USING THE HART® COMMUNICATOR USER INTERFACE

Figure 2-1
375 user interface

Applies to newer models, for example: 475 and AMS TREX device communicator.

2.2 SETTING UP THROUGH HART® COMMUNICATOR USER INTERFACE

After installing and connecting the transmitter, connect the user interface to the transmitter. The following menu is displayed: **Main menu**. To select the **HART Application**.

The following menu is then displayed:

- 1 Measurement
- 2 Configuration
- 3 Information
- 4 Diagnostics
- 5 Review

To change the measurement unit, damping time constant or output mod, select **Configuration**.

The following menu is then displayed:

- 1 Range values
- 2 Output
- 3 Transfer function
- 4 General setup

To change the measurement unit, select **Range values**.

The following menu is then displayed:

- 1 LRV
- 2 URV
- 3 LSL
- 4 USL
- 5 Min span
- 6 Apply values

To change the damping time constant, select **Output** from the Configuration menu.

The following menu is then displayed:

- 1 Damping
- 2 Alarm current

To change the output mode, select **Transfer function** from the **Configuration** menu.

The following menu is then displayed:

- 1 Lin. func
- 2 User function data

After these activities or if the transmitter is supplied with the ready configuration you must correct a zero error of the transmitter in a final installation position.

The First press **Diagnostics** and then **Sensor trim** and then **Zero trim**.

The following text is then displayed : *WARN-Loop be removed from automatic control*

The final zero error correction can be done to select **ABORT** or **OK** on the display.

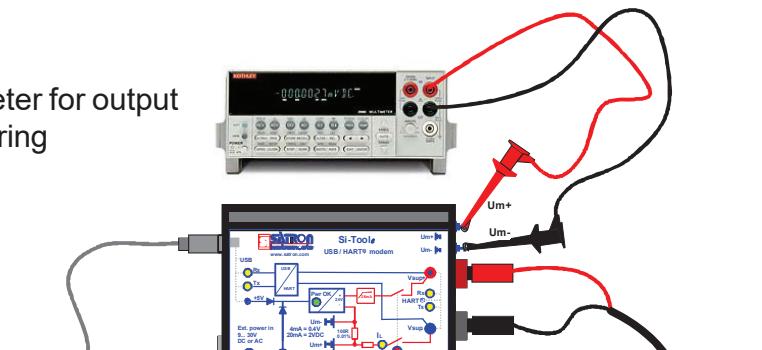
2.3 DEVICE CONFIGURATION WITH SATRON PADVISOR SERVICE SOFTWARE

When you will have available all the operations of the Smart transmitter, we recommend the use of Satron pAdvisor Service Software and Satron SI-Tool e USB-Hart-modem in setting-up.

Test connections for configuration and pressure/output current values checking and calibration and for SENSOR TRIM function

Recommended equipment for calibration

Satron pAdvisor service software for SATRON Smart transmitter (can be loaded free of charge from www.satron.com)

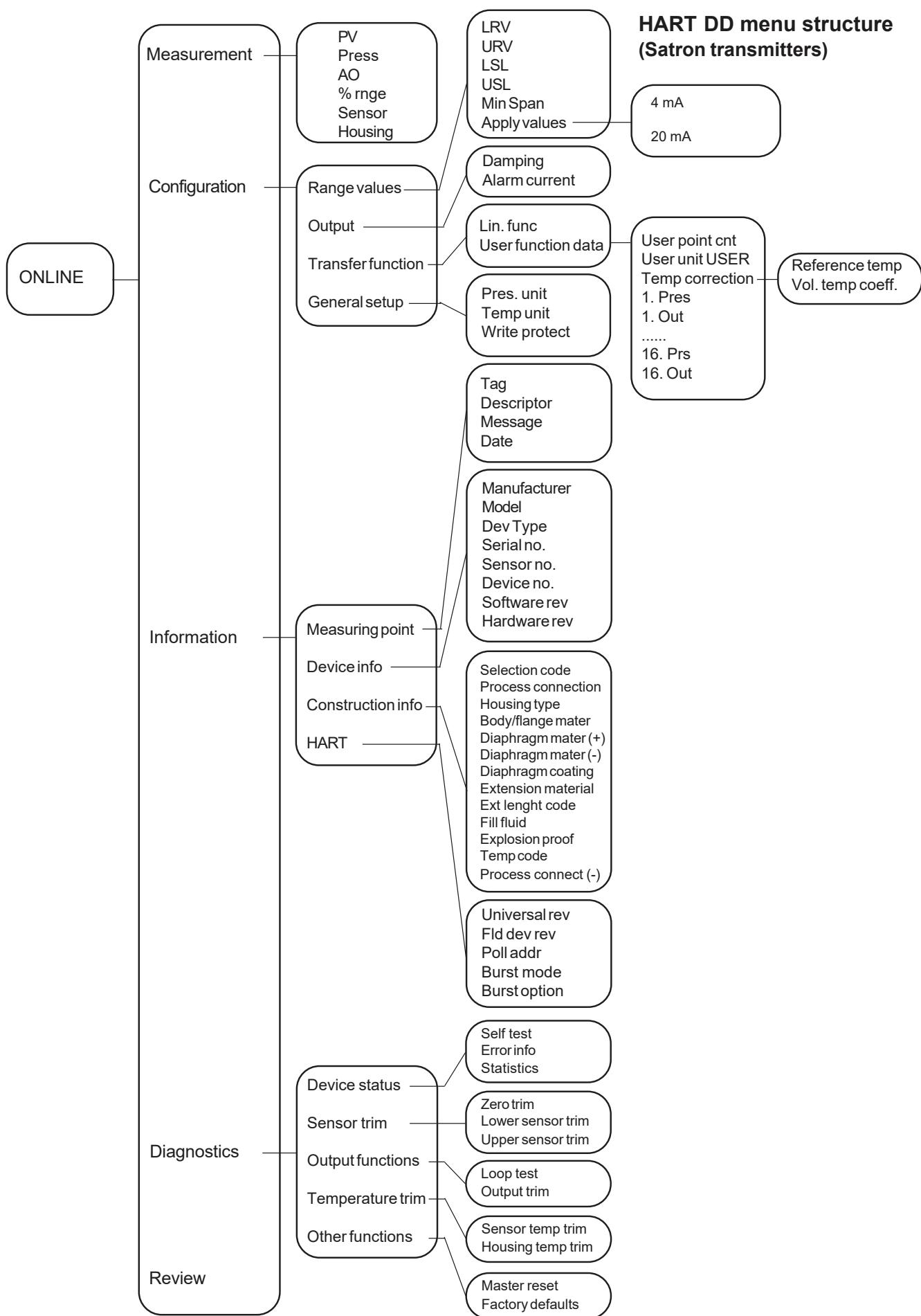

PC: operating system Windows 10 or newer.

DMM: Digital multimeter, basic DCV accuracy better than 0,01 % of reading (for example Fluke 8840A, Keithley 2000)

Cal. pressure generation and measurement device (accuracy better than 0,03 % of reading)

USB-Hart modem, Satron SI Tool_e, code: **M1330002**

Digital multimeter for output current measuring


PC

Cal. pressure generation and measurement device

Calibration stand for VG, order code: **M1050165-VG**

Figure 2-2 Calibration connections window

3. CONSTRUCTION AND OPERATION

3.1 SMART TRANSMITTER

Sensor Module

The piezoresistive sensor, which has a silicone oil fill, is isolated from the process with a diaphragm. Sensor pressure and temperature are measured with a 24-bit AD converter. Linearity and temperature effects are digitally corrected with an internal microprocessor connected to the sensor module.

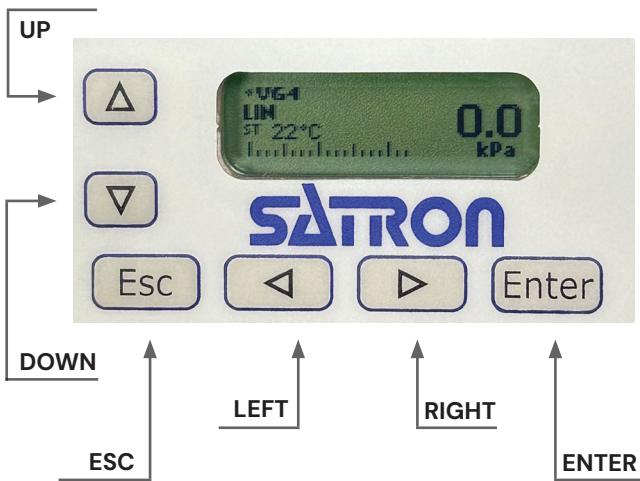
The **sensor** converts pressure to electrical signal. The conversion is carried out through a Wheatstone bridge supplied with direct current. The elastic displacement produced in the bridge by the pressure causes bridge unbalance which is measured as a DC voltage signal.

Compensation includes temperature compensation and linearization. Each sensor is calibrated individually through a resistance network connection. The temperature information required by compensation is derived from a temperature measuring element located by the Wheatstone bridge.

Electronics Module

The electronics module converts the process pressure signal from the sensor module to 4-20 mA output signal. The conversion can be made in linear, square root or inverted mode, or it can be done through user-selectable pressure/output point pairs (2-16 points).

Transmitters provided with own display (code N) is equipped with operating keys that allow you to define the transmitter's all functions.


The active functions required for **signal shaping** are in a customized IC which is divided into two sub-blocks: amplifier block and standard-signal shaping block. The standard-signal shaping block also includes zero, span and damping adjustments.

The **interface stage** includes failure protections to ensure the transmitter's operation and nonfailure in possible failure conditions. This stage also includes the TEST and cable connections.

4. USER'S GUIDE FOR MENUS

V-SERIES (HOUSING TYPE N)

The user interface for the V-series transmitters, housing option **N**, consists of display and operating keys. Among other things, the user interface allows you to set process variables in the desired units on the display and to configure the transmitter e.g. by setting the lower and upper range-values (LRV, URV) and the process variable's unit and tag code. In addition, you can perform diagnostic routines and view device information through the user interface.

OPERATING KEYS:

With the **LEFT/RIGHT** [\leftrightarrow] and **UP/DOWN** [$\uparrow\downarrow$] arrow keys and **ENTER** and **ESC** you can move in the menus.

The functions of the keys:

LEFT [\leftarrow]:

Use the **LEFT** arrow key to move left on the current menu level.

RIGHT [\rightarrow]:

Use the **RIGHT** arrow key to move right on the current menu level.

UP [\uparrow]:

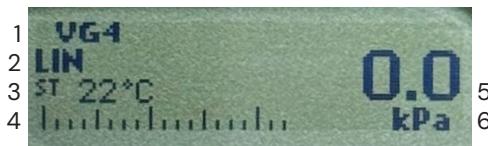
Use the **UP** arrow key to increase the selected parameter value.

DOWN [\downarrow]:

Use the **DOWN** arrow key to decrease the selected parameter value.

ENTER:

Press **ENTER** to accept a command or parameter value and to enter the current menu.


ESC:

Press **ESC** to go to the submenus and to move back towards the previous level and to the top of the main menu.

The main menu has 4 submenus: Measurement, Configuration, Info and Diagnostics menus. When the transmitter is powered up it will go to the Measurement menu's main display, i.e. Process Value.

1. MEASUREMENT MODE MENU: MEASURE

When the transmitter is powered up, it immediately shows the **MEASURE** menu's main display. The menu does not have any variables adjustable by the user.

1.1 DEVICE TYPE:

For example, VG4.

1.2 LIN:

The LIN at the left of the display specifies the linearization function in use. The available options are as follows:

LIN	Linear
LIN ZERO	Zero-based linear
INV LIN	Inverted linear
SQRT	Square root
USER LIN	User 16 points

Define the linearization function by selecting **LIN FUNC** from the **CONFIGUR** submenu.

1.3 ST:

Sensor temperature in $^{\circ}\text{C}$ or $^{\circ}\text{F}$ (e.g. 22 $^{\circ}\text{C}$). Select the unit from the **CONFIGUR** submenu.

1.4 MEASUREMENT GRAPHIC:

Graphic mA scale that goes up and down according to the measurement changes.

1.5 PROCESS VALUE:

This shows the PV (process value/primary variable) which may be pressure, volume, differential pressure, etc. (e.g 0.0).

1.6 PRESSURE UNIT:

The unit of the pressure detected by the sensor (e.g. kPa).

Use the **LEFT/RIGHT** [\leftrightarrow] keys to move in the menu. Moving **RIGHT** you will find the following variables.

1.8 P, PRESSURE VALUE

The pressure detected by the sensor.

1.9 IOUT

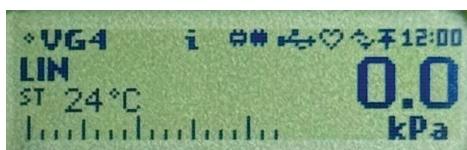
Current signal's value in milliamps (mA).

1.10 %, PERCENT

Current signal's value in per cents (%) of full-range value.

1.11 ST, SENSOR TEMPERATURE

Sensor temperature in °C or °F. Select the unit from the **CONFIGUR** submenu.


1.12 ET, ELECTRONICS TEMPERATURE

The temperature of the transmitter's electronics, either °C or °F. Select the unit from the **CONFIGUR** submenu.

1.13 SN

The transmitter serial number.

The top row of the graphic display shows information and can include icons. Their meanings are explained below.

- ◆ **Blinking dot:** indicates that CPU and display are fine.
- VG4:** informs the device type.
- **Depends on the status information:**
 - A static **i** indicates a warning or noncritical error, with the measurement value blinking. It can also signal an unacknowledged inactive error bit.
 - Exclamation mark **!** and **mA** indicate a critical error (alarm current is active).
 - Otherwise, device status is empty.
- When data or event is being logged into memory.
- When EEPROM is being written.
- USB communication active.*
- HART communication active.
- IO-Link communication active.*
- Upload symbol: when log is being read.
- Download symbol: when firmware is being updated.
- **12:00** RTC HH:MM (if Real Time Clock is activated).*

*Not yet available with PREON.

2. CONFIGURATION MENU: CONFIGUR

Go to the Configuration mode from the main menu level pressing the **ESC** key and then **RIGHT** arrow. Then press **ENTER** to access the **CONFIGUR** submenu. In this submenu you can define the upper and lower range-values (**URV**, **LRV**), device identification code, linearization function, etc. Use the **ESC** key to exit the **CONFIGURATION** menu to the main menu.

2.1. MANUFCTR

SATRON

Manufacturer's name.
Cannot be changed.

2.2. DEV TYPE

VG4

Product type code.
Cannot be changed

2.3. TAG

PI-206

Tag code. You can enter free format text one character at a time. When you select this option with **ENTER** the cursor will be at the left. Select characters with **UP/DOWN[↑↓]** keys. You can view the selectable characters one character at a time with the **UP/DOWN[↑↓]** keys until the desired character is found and then move right to select the following characters. When the cursor is at the right edge you can save the tag code pressing **ENTER** or go back to the **CONFIGUR** menu without changing the tag code by pressing **ESC**. You can go back to edit mode by pressing the **ESC** key when asked to save your entry. Apostrophe indicates the cursor position; at point, however, the cursor will disappear. A great deal of special characters are available besides letters and numbers.

2.4 PV URV, UPPER RANGE VALUE

100.00

This is the process variable's upper range-value corresponding to 20 mA. Set the value in the selected units, which are displayed first. The numerical value is shown in the next screen where you can also edit the value. The procedure is similar to **TAG**, except that you first set the position of the decimal point with the **LEFT/RIGHT[←→]** keys. After accepting that with **ENTER** you can edit each digit in the value in the same way as the characters in **TAG**. If the defined upper range value is invalid, the display will blink and you go back to re-edit the value.

2.5 PV LRV, LOWER RANGE VALUE

0.0000

Here you set the process variable's lower range value corresponding to 4 mA. The procedure is the same as for upper range value.

2.6 PV DAMP, DAMPING

15.0 S

Time constant, in seconds, for output damping. The range is 0.025s to 60s. Set the value with the **UP/DOWN[↑↓]** keys and accept it with **ENTER**, or press **ESC** if you do not want to change the value.

2.7 PV UNIT

MBAR

Here you can display or change the applied unit of measure. Press **ESC** to exit without making a change. Press **ENTER** to accept new value. Use the **LEFT/RIGHT[←→]** keys to view the units. The selectable units include **KPA**, **TORR**, **ATM**, **MPA**, **INH2O**, **INHG**, **FTH2O**, **MMH2O**, **MMHG**, **PSI**, **BAR**, **MBAR**, **G SQCM**, **KG SQCM**, **PA**.

2.8 T UNITS

C

Select the temperature unit from this menu. The unit can be °C or °F. Proceed as described above to make the selection.

2.9 LANGUAGE

ENGLISH

From this menu you can select the desired language (**SUOMI, SVENSKA, ENGLISH, DEUTSCH or FRANCAIS**). Use the **LEFT/RIGHT[↔]** keys to select the language, press **ENTER** to save the selection, or press **ESC** to exit without saving.

2.10 PASSWORD

12

From this menu you can set a password (0...999) for the transmitter. If a password has been specified, you cannot set any parameters or make any other settings on the transmitter unless you enter the correct ID number in this menu. Password is not in use when **PASSWORD** is 000 after reset. You enter the **PASSWORD** in the same way as **TAG. PASSWORD** will be on when you define a value between 1 and 999. If you forget password get in contact with Satron Instruments Inc.

2.11 LRV=PV

0.000000

Here you set the current process pressure as lower range value (**LRV**). Accept the setting with **ENTER** when asked to confirm the value (**SAVE?**). Press **ESC** to exit if you do not want to change the value. Compare this function to **LRV**. Blinking value indicates an error, i.e., measured pressure is lower than the sensor's lower range-value or the difference between upper and lower range-values is not on the specified range.

2.12 URV=PV

90.000000

Here you set the current process pressure as upper range value (**URV**). Accept the setting with **ENTER** when asked to confirm the value. Press **ESC** to exit if you do not want to change the value. Compare this function to **URV**. Blinking value indicates an error, i.e., measured pressure is higher than the sensor's upper range-value or the difference between upper and lower range-values is not on the specified range.

2.13 LIN FUNC

LIN FUNC

In this menu you select the output transfer function for current loop connection. The selection is done with the **LEFT/RIGHT[↔]** keys, and the options are as follows:

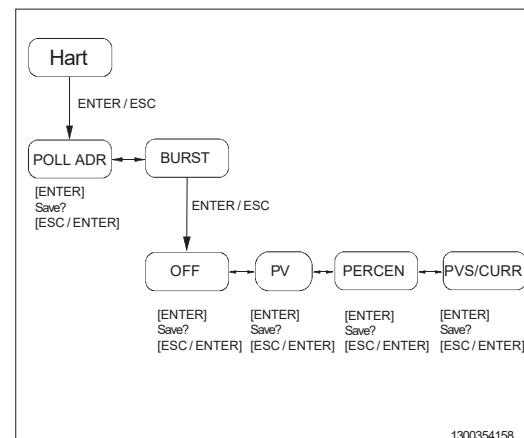
LIN:	Linear 4mA to 20mA [process value's zero point = current pressure value (value measured by sensor)].
LIN ZERO:	Process value's zero point is the same as the lower range-value.
INV LIN:	Inversely linear 20mA to 4mA.
SQRT:	Square root 4mA to 20mA.
USER LIN:	User-defined 16-point interpolated transfer function for output. Enter the points through the USER FUNCTION option or through HART user interface.
USER SPL:	The same as USER LIN , but this generates a smoother transfer function for the output.

2.14 HART® COMMUNICATION LINK SETTINGS

HART

Select this function with the **LEFT/RIGHT[↔]** keys. In menus 1-3 you select the content of the burst message. You can view the available selections with the **LEFT/RIGHT[↔]** keys.

Available options:


In menu 1 (PV): Transmitter sends process value PV to system.

In menu 2 (PERCEN%): Transmitter sends process variable's value in per cent of specified measuring range to master.

In menu 3 (PVS/CURR): Transmitter sends all process variables and current signal's value.

In menu 5 (POLL ADR): Select the transmitter's Hart® address. The address can be set between 0 and 15. Address 0 defines current loop, in which case the transmitter will operate in two-wire system. The procedure is the same as described above.

In menu 6 (BURST ON/OFF): Select the Burst mode. First define the process variable sent by the transmitter from menus 1-3. The procedure is the same as described above.

1300354158

2.15 ALRM TYP

3.7 MA

Current signal will settle at either 3.7 mA or 22.5 mA to indicate transmitter fault to an external device. Use the **LEFT/RIGHT** [$\leftarrow\rightarrow$] keys to select the current value from the menu. The default is 3.7 mA.

2.16 DATE

09092024

The date consists of a single field. For instance, 09092024 specifies 09 September 2024. You can edit the date in form ddmmyy. The calendar year can be selected from between 1900 and 2155. This date can be example date of calibration.

2.17 USER.PNTS

POINTS

In this menu you define the points for a user-defined function. You enter the pressure and corresponding output point by point. The number of points is at least 2 and at most 16. In this connection you can also define the corresponding reference temperature **T REF** and volume's temperature coefficient **V T COF**. Select and accept the numerical values as described above. Set the pressure and the corresponding output. Make the settings one character at a time in the same way as when defining **TAG**. Press **ESC** to return to the **CONFIGUR** menu. Press **ENTER** to edit the selected variable. Use the arrow keys to select the desired variable. The selectable variables include the following:

POINTS	volume of couple of points (2...16)
UNITS	unit (max. 8 markers)
PRES 0	1st reference pressure
OUT 0	Output corresponding to 1st reference pressure at reference temperature
PRES 1	2nd reference pressure
OUT 1	Output corresponding to 2nd reference pressure at reference temperature
PRES 15	16th reference pressure
OUT 15	Output corresponding to 16th reference pressure at reference temperature
T REF	Reference temperature
V T COF	Volume's temperature coefficient
	You can change the variables in the same way as TAG

2.18 DISPLAY

DISPLAY

In this menu you can select the direction in which the display will be read:

NORMAL: From left to right. Transmitter mounted horizontally with process connection directed to the right.
ROTATED: Rotates the text 180 degrees from **NORMAL**.

2.19 BACKLIGTH

BACKLIGTH

In this menu you select the backlight on / off. The selection is done with the arrow keys, and the options are as follows:

MODE:

OFF	Backlight off
DELAYED	Backlight on for 60 s after the start.
BUTTON	Backlight on for 60 s for the last button is pressed,

BLINK:

OFF	Backlight blink off.
-----	----------------------

COLORS:

ENABLED	Enable different colors. The display color will change to RED if there is an alarm or error in the transmitter and to BLUE when reading the transmitter log data.
DISABLED	Disable different colors.

3. DEVICE INFORMATION MENU: INFO

You can select the device information menu from the Main Menu level with the **ENTER** key. In this submenu you can view the upper and lower range-values (**URV**, **LRV**), device ID number, sensor's upper and lower scale-limits (**USL**, **LSL**), etc. Use the **LEFT/RIGHT** [$\leftarrow\rightarrow$] keys to view these items. Press **ESC** to return to the Main Menu level. You cannot change the data displayed in this menu.

3.1 MANUFCTR:

SATRON

The manufacturer of the transmitter.

3.2 DEV TYPE

VG4

Product type code. E.g. VG4.

3.3. TAG

PI-206

Tag code. E.g. PI-206.

3.4 PV USL

100.0000

Sensor's upper scale-limit in the selected units. Press **ENTER** to select this item. The configured unit will be displayed when you press **ENTER** a second time.

3.5 PV LSL

000.0000

Sensor's lower scale-limit in the selected units. The procedure is the same as for **USL**.

3.6 MIN SPAN

4.00000

Minimum span. Press **ENTER** to select this item. Press **ENTER** a second time to display the unit. Press **ESC** to exit.

3.7 ASSM NUM

2407

The transmitter's assembly number. Press **ENTER** to select this item. Press **ESC** to exit. For instance, assembly number 2407 shows that the transmitter was made in week 07 of the year 2024.

3.8 PV SNSR

N 79565

The sensor's serial number. Press **ENTER** to select this item. Press **ESC** to exit. E.g. N 79565.

3.9 VERSION

11

Version numbers of the transmitter's electronics and software. Press **ENTER** to select this item. Press **ESC** to exit. With the **LEFT/RIGHT** [**↔**] keys you can select either **CPU HW**, **CPU SW**, **CPU FW**, **ADC HW**, **CPU ID** or **MAN REV** (manual revision) revision number or **CPU ID** number from this submenu.

3.10 OP TIME

11:36:52

The value of the operation time save at 1 hour intervals. When the value of the counter is < 100 hours so value save 1 minute intervals.

The value of the operation time counter on the display :
 HH : MM : SS when the value of counter is <100 hours
 HHHH : MM when the value of counter is <100000 hours
 HHHHHHHH when the value of counter is ≥100000 hours

4. DIAGNOSTICS MENU: DIAGNOST

Select the **DIAGNOST** menu on the Main Menu level with the **ENTER** key. This submenu allows you to examine the transmitter's internal errors and faults, to set the transmitter to give out a fixed current, and to calibrate the transmitter.

4.1 STATUS

DEVICE OK

Here you can display and reset accumulated errors one at a time. The text **DEVICE OK** will be displayed if there are no errors. Possible error messages (alarm means a serious fault/error that also puts the current signal in fault status and makes the display blink).

Bit	Error message	Description
0	P ER	Pressure (P) error
1	ST ER	Sensor temperature (ST) error
2	ET ER	Electronics temperature (ET) error
3	RANGE ER	Percentage of output under -10% or over 110% error
4	OUTSA WA	Output current saturated
5	ADCR ER	ADC converter runtime error
6		
7		
8	ADCS ER	ADC converter startup error
9	EEPERR ER	EEPROM checksum error
10	EEPWR ER	EEPROM write error
11	EECAL ER	EEPROM calibration error
12	HART ER	HART communication error
13	INTRN ER	Internal system error
14		
15		

Table 1.

The content of error word 1 (**EW1=0...15**).

An example of how to decipher error word:

"EW1=0018" means 0018 (hex) = 0000 0000 00011000 (bin).

This means that error word bits 3 and 4 are raised (error messages: RANGE ER and OUTSA WA).

4.2 LOOP TST

LOOP TST

The transmitter can be set to give out a fixed current signal for testing the mA output. The first **ENTER** will switch the transmitter off from normal mode (**AUTO OFF**), the second **ENTER** will set it for 4 mA output, and the third **ENTER** for 20 mA output. The next **ENTER** after that will give default value 12 mA, which can be changed as desired with the **UP/DOWN[↑↓]** keys. The last **ENTER** will switch the transmitter back to normal mode (**AUTO ON**). The purpose of this test is to test the accuracy of the transmitter's current output with a reference meter. If any shortcomings are detected, refer to **4.3 LOOP CAL** for calibrating the mA output.

4.3 LOOP CAL

LOOP CAL

Here you can calibrate the current signal given by the transmitter. The first **ENTER** will switch the transmitter off from normal mode (**AUTO OFF**). The next **ENTER** will make the transmitter give out a signal which it assumes to be 4 mA. Use the **UP/DOWN[↑↓]** keys to change this value in accordance with the reading on the reference meter. Then press **ENTER** for 20 mA output, which you must also set in accordance with the reference meter. Press **ENTER** to accept the new reading. **Note:** Use a sufficiently accurate reference meter.

4.4 SENS.TRIM

SENS.TRIM

Here you can calibrate the pressure values. Pressing **ENTER** will display **LWR.TRIM**, where you give the measured value for the sensor's lower calibration pressure. In the next display, **UPR.TRIM**, you give the measured value for the sensor's upper calibration pressure.

The procedure:

- Apply a pressure corresponding to the desired **LRV** (lower range-value).
- Select **DIAGNOST /SENS.TRIM**. Pressing **ENTER** will now display **LWR.TRIM**, and the next **ENTER** will show the pressure reading.
- Use the **UP/DOWN[↑↓]** keys to adjust the displayed pressure in accordance with the reference meter's pressure reading as described in **2.4 UPV**.
- Press **ENTER** to accept the adjusted reading, or press **ESC** to exit without saving the value.
- Apply a pressure corresponding to the desired **URV** (upper range-value).
- Pressing **ENTER** will display **UPR.TRIM**. The next **ENTER** will display the measured pressure.

- Use the **UP/DOWN[↑↓]** keys to adjust the displayed pressure in accordance with the reference meter's pressure reading.

NOTE!

The difference between **LWR.TRIM** and **UPR.TRIM** must be at least the transmitter's minimum span.

4.5 PV ZERO

PV ZERO

Here you can reset the transmitter. Pressing **ENTER** will display **PV=ZERO?**. Pressing **ENTER** a second time will display **SAVE?** The transmitter will be reset if you press **ENTER** after that.

4.6 EL-DIFF

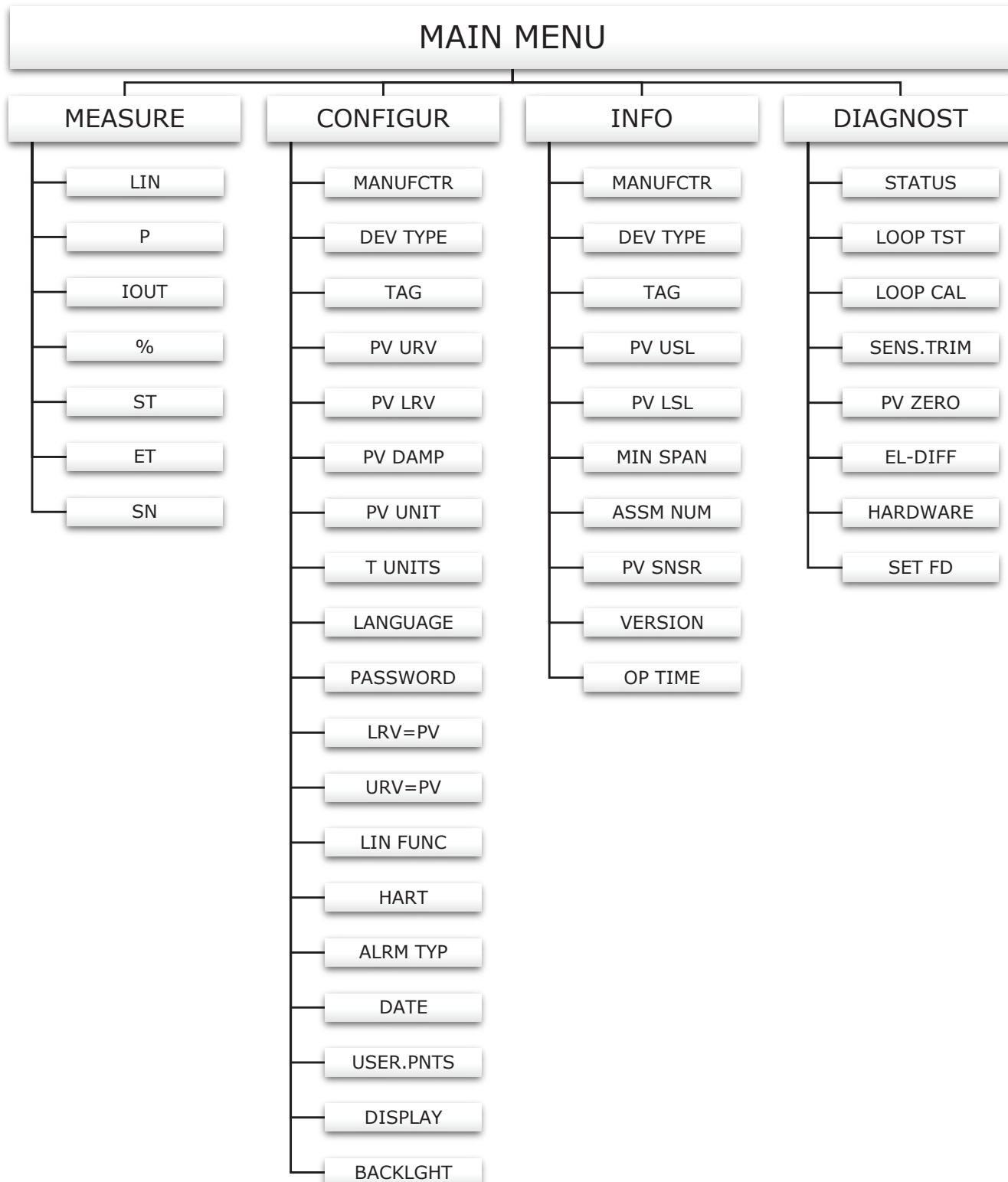
EL-DIFF

Displays all available pressure variables and the related sensor information.

(Normal pressure and differential pressure transmitters include only P1 and 1st sensor's information but VDUs extend to variables P1, P2, P1-P2, P2-P1 and 2nd sensor's information).

4.7 HARDWARE

HARDWARE


VOLTAGES: Internal voltage levels.

DISPLAY: Automatic display and push buttons' test function.

4.8 SET FD

SET FD

Restores the Factory Default Settings. If the Factory Default Settings are not stored in the memory, the menu will display N/A.

Look Closer